
COMP 115
Databases

Fall 2019

Exam 1
October 21, 2019

4:30–5:45 PM

1. Schema Design (30 points)
We have the following badly designed schema for modeling university Departments,
Majors, and Students. A Major is offered by exactly one Department. Each Student has
exactly one Major.

create table university(
 dept_id int not null,
 dept_name varchar not null,
 dept_address varchar not null,
 major_id int not null,
 major_name varchar not null,
 major_dept_id int not null,
 student_id int not null primary key,
 student_name varchar not null,
 student_major_id int not null,
 student_graduation_date date not null
);

In your answers, please abbreviate column names, e.g. dept_id → DI, dept_name →
DN, student_major_id → SMI, etc.

1.1. (3 points) What are the entities being modeled?

1.2. (3 points) What are the relationships among the entities? Identify the relationships
as one-to-one, one-to-many, and many-to-many using arrow notation. E.g. A ↔ B is
one-to-one, A → B and A ← B are one-to-many, and A — B is many-to-many.

1.3. (8 points) What functional dependencies exist? You should be able to identify these
using:

• The information provided in the question.
• Your entity and relationship definitions.
• Naming hints (e.g. a column name ending in _id identifies something uniquely).

Guidelines:

• Do not list FDs that can be obtained by transitivity, e.g. if A → B and B → C,
then don't bother listing A → C.

• Do not list trivial FDs, e.g. A,B → A.
• Remember that A → B,C is equivalent to A → B and A → C. I don't care which

notation you use, but obviously A → B,C minimizes the amount of writing you
have to do.

1.4. (16 points) Do a BCNF decomposition of the university table using the FDs you
gave earlier. For each step:

• Identify a table that is not BCNF.
• Identify the FD that causes the BCNF violation.
• Identify the closure of that FD.
• Identify the two tables resulting from the decomposition.

2. SQL (30 points)
The following questions rely on this schema:

create table sale_date(
 when date not null primary key,
 weekday bool not null, -- True for a weekday
 weekend bool not null, -- True for a weekend day
 holiday bool not null -- True for a holiday
);

create table salesperson(
 salesperson_id int not null primary key,
 name varchar not null
);

create table sale(
 sale_id int not null primary key,
 when date not null
 references sale_date,
 salesperson_id int not null
 references salesperson,
 price numeric(10, 2) not null
);

2.1. (5 points) Write a SQL query to print the names of salespeople who sold anything
on 1/5/2018. Don't print any name more than once.

2.2. (5 points) Write a SQL query to print the average weekday sales, across all sales
and dates, (i.e., sale_date.weekday is true).

2.3. (8 points) Write a SQL query to print the names of salespeople who have never
made a sale.

2.4. (12 points) Write a SQL query to print total sales for each sale date, ordered by
date. Be sure to include days on which there were no sales.

3. B+-trees (24 points)
In this question, assume that a B+-tree leaf node can accommodate three records, and
that an interior node can accommodate three keys. Highly unrealistic, but never mind
that.

3.1. (4 points) Draw the B+-tree obtained by inserting records with keys 10 and 20 into
an empty B+-tree.

3.2. (4 points) Given this B+-tree:

draw the B+-tree resulting from the insertion of records with keys 2 and 6. (Note: The
B+-tree in the diagram has a root containing the key 7. The leaf nodes have the full
record containing key 7, as well as records for all the other keys shown.)

3.3. (4 points) Given this B+-tree:

draw the B+-tree resulting from the insertion of records with keys 53 and 59.

3.4. (6 points) Given this B+-tree:

draw the B+-tree resulting from the insertion of a record with key 50.

3.5. (6 points) Given this B+-tree:

draw the B+-tree resulting from the deletion of the record with key 37.

4. Indexes (16 points)
We have the following table and indexes:

create table R(
 a int,
 b int,
 c int,
 d varchar
);

create index on R(a, b, c);

create index on R(c, a);

Both indexes are implemented using B+-trees, (which is the default in all database
systems).

Which indexes can potentially be used with the following queries. You can refer to the
indexes by their columns, e.g. abc indicates the index on R(a, b, c), and ca
describes the index on R(c, a).

4.1. (2 points) select * from R where a = 1 and b = 2 and c > 3
4.2. (2 points) select * from R where a = 1 and b = 2 and c = 3
4.3. (2 points) select * from R where a > 1 and b = 2 and c = 3
4.4. (2 points) select * from R where a > 1 and b > 2 and c = 3
4.5. (2 points) select * from R where a = 1 and b > 2
4.6. (2 points) select * from R where a > 1 and b = 2
4.7. (2 points) select * from R where a > 1 and c = 3
4.8. (2 points) select * from R where b = 2 and c = 3

	1. Schema Design (30 points)
	2. SQL (30 points)
	3. B+-trees (24 points)
	4. Indexes (16 points)

