COMP 115

Databases
Fall 2018
Exam 2
December 14, 2018
7:00-9:00 PM

1. B-Trees

If you load a set of records into a B-tree in random order, then the expected storage
utilization is 70%.

1.1. What is the storage utilization if the records are inserted in increasing key order?
(Hint: figure out the storage utilization at the leaf level and ignore the other levels. This
is justified since the number of internal nodes is relatively tiny.)

1.2. Suppose you knew in advance that the next N inserts to a B-tree were all going to be
at the end of the B-tree, and in increasing order. (E.g. the largest key present so far is
1199, and you insert keys 1271, 1309, 1414, 1506, 1672, 1788, ...) How would you
modify the insertion algorithm to obtain 80% storage utilization for the leaf pages
containing the newly inserted records? (Don’t write out the entire algorithm, just
describe the one detail that changes.)



2. Index Usage
We have a table:

create table T(
id int primary key not null,
X int,

int,

int,

int,

int)

< £ N K

2.1. Consider this query:

select *

from T

where x = 10

and y between 20 and 22

Assume that each restriction is highly selective, e.g. x = 10 identifies < 1% of the
rows, and the same is true forb between 20 and 22.

There are a variety of indexing strategies that could be considered:

a) An index on (x) only.

b) An index on (y) only.

c) An index on (x) and another index on (y).
d) Anindex on (x, V).

e) Anindexon (y, X).

f) No indexes involving x or y.

Which of these indexes are candidates for use this query? Describe the query plans and
rank them from fastest to slowest.

2.2. Same as above, but for this slightly different query (replacing the and with an or):

select *

from T

where x = 10

or y between 20 and 22



2.3. For each of the following sets of queries, identify a set of indexes that can be used
to produce the fastest possible execution. (Assume each restriction is highly selective.)
The goal is to use as few indexes as possible in each case, ideally one.

a)

* select

*

* select *

b)
* select

* select *
* select *

c)
* select
* select
* select

* select

* * X X

from
from

from
from
from

from
from
from
from

T
T

H 3 4

H 3 34

where
where

where
where
where

where
where
where
where

E

KoX KR OX

o U

N O W

and y

and z
and y

and y =
and z =

and z
or 2z

8



3. Query processing

The SQL union operator computes a set union of two sub-queries, eliminating
duplicates, e.g.

select a, b, ¢ from R
union
select x, y, z from S

The union all operator computes the same thing except that duplicates are
preserved.

The most obvious implementation of union all copies the rows from X to output,
then copies the rows of Y to output. The most obvious implemenation of union simply
relies on the union all and unique operators, i.e. union(X, Y) =
unique(union all(X, Y)).

But there are faster ways to implement union.

3.1. Write a pseudo-code algorithm for union (X, Y), where X and Y are input
streams. Just give an algorithm that writes all output rows into a set — you don’t have to
write the algorithm as an iterator. Your goal is to come up with an algorithm faster than
the naive one described above. Explain why your algorithm is faster.

3.2. For the algorithm you described in 3.1, do you get better performance if the smaller
input is on the left? On the right? Or does it not matter? Explain your answer.



create

create

create

create

create

create
create
create
create
create

create
create
create
create

table

table

table

table

table

index
index
index
index
index

And on foreign keys:

index
index
index
index

A(

B(

C(

D(

E(

on
on
on
on
on

on
on
on
on

4. Query Optimization

Consider these tables:

aid int
<)

bid int
L 4

aid int

cid int

bid int
did int
bid int
eid int

did int

We have indexes on the primary keys:

A(aid)
B(bid)
C(cid)
D(did)
E(eid)

B(aid)
C(bid)
D(bid)
E(did)

not null primary

not null primary
references A);
not null primary
references B);
not null primary
references B);
not null primary

references D);

key,

key,

key,

key,

key,



4.1. For this query:

select E.*

from A

join B using (aid)
join C using (bid)
join D using (bid)
join E using (did)
where

Draw the diagram showing the enumeration of left-deep join plans, generated by
dynamic programming.

4.2. Which of the following join plans would not be considered at any point during this
enumeration of joins? For each join ruled out, explain why it would not be considered.

j1 join(A, B)

j2 join(B, A)

j3 join(C, D)

j4 join(A, join(B, D))

j5 join(join(B, D), A)

6 join(join(A, B), E)

j7 join(join(join(B, A), D), E)
j8 join(join(A, join(B, D)), E)
j9 join(join(A, B), join(D, E))




4.3. These tables are similar to those from Assignment 8 (the assignment in which you
used EXPLAIN find the indexing strategy minimizing estimated query cost):

create table T(tid int not null primary key,
z int,

cel)

create table S(sid int not null primary key,
y int,
tid int references T,
uid int references U)

create table R(rid int not null primary key,
X int,

sid int references S)
R has 2,000,000 rows, S and T have 200,000 rows each.

explain select S.y, T.x
from R join S using (sid)

join T using (tid)
where R.x =1

If we have only indexes on the primary keys, we get this execution plan (row width
information has been removed for readability):

Nested Loop (cost=0.84..41756.31 rows=10)
-> Nested Loop (cost=0.42..41751.47 rows=10)
-> ©Seq Scan on r (cost=0.00..41667.00 rows=10)
Filter: (r_10 = 1)
-> 1Index Scan using s _pkey on s (cost=0.42..8.44 rows=l)
Index Cond: (s_id = r.s id)
-> 1Index Scan using t pkey on t (cost=0.42..0.47 rows=1)
Index Cond: (t_id = s.t id)



a) What single index should result in the biggest improvement in query performance?
b) Describe the change to the query plan from adding this index.

¢) Describe indexing changes that could allow the optimizer to make use of at least one
covering index optimization, (i.e., using an Index Only Scan instead of an Index
Scan). The more opportunities you can find, the better. (Hint: An indexing change
could involve either adding an index, or modifying an existing index.)



5. Strict Two-Phase Locking

We have three transactions that read (R), or write (W), three rows, a, b, and c.

Tl: Ra, Rc
T2: Wa, Wb
T3: Wc, Rb

The scheduling of these steps, mediated by shared (S) and exclusive (X) locks,
determines the serialization order of the transactions. What is the serialization order for
each of the following schedules?

5.1.
T1 T2 T3
Sa
Ra
Xa
Sc
Xc
Rc
COMMIT
Wa
Wc
Xb
Sb
Wb
COMMIT
Rb
COMMIT




5.2.

Tl T2 T3
Xc
Wc
Xa
Sa
Sb
Wa
Xb
Rb
COMMIT
Wb
COMMIT
Ra
Sc
Rc

COMMIT




5.3.

Tl T2 T3
Xc
Wc
Xa
Sa
Wa
Xb
Sb
Wb
COMMIT
Rb
Ra
COMMIT
Sc
Rc

COMMIT




5.4. The following schedule has a bug in it. What went wrong? Is the final database state
correct in spite of the bug? A yes/no answer is not sufficient, explain your reasoning.

Tl T2 T3
Xc
Wc
Xa
Sa
Ra
Wa
Xb
Sb
Wb
COMMIT
Rb
COMMIT
Sc
Rc
COMMIT

6. Multi-Version Concurrency Control
We have a Postgres database, which implements multi-version concurrency control. The
database starts with one table containing one column, with 5rows: a, b, ¢, d, e.

The initial value of each row is (1).

We have the following schedule, in which all transactions are executed with serializable
isolation:



Tl T2 T3 T4 T5
Ra
Rb
Wa=2
Ra
Wbh=2
COMMIT
Rb
Ra
Re
We=4
Rd
Ra
Wa=3
Wd=4
COMMIT
Rc
Rc
Wa=5
We=3
Rd
Rd
Wd=3
COMMIT
Re
COMMIT

Rx: Read row x

Wx=3: Update the value row of x in the database to 3.



6.1. After this schedule executes, and before the database is vacuumed, how many
versions of a are there? List the versions in chronological order.

6.2. After the transactions complete, there is a vacuum, and then no more transactions
begin. How many of versions of a exist in the database?

6.3. What valuesof a, b, c, d, earereadby T1?
6.4. What are the final valuesof a, b, c, d, e?

6.5. T5 gets an error message when it tries Wa=5. Why?



	1. B-Trees
	2. Index Usage
	3. Query processing
	4. Query Optimization
	5. Strict Two-Phase Locking
	6. Multi-Version Concurrency Control

