
COMP 115
Databases

Spring 2019

Exam 2
May 6, 2019

7:00–9:00 PM

1. Query Optimization – Theory (25 points)
Query optimization relies on algebraic equivalences. For example, if R and S are tables,
and p is a predicate on R, then

select(join(R, S), p) = join(select(R, p), S)

is an equivalence that can be used to generate execution plans to be considered by the
optimizer. The following questions are about equivalences involving SQL UNION.
Consider this query:

select c1, ..., cn from R where p
union
select c1, ..., cn from R where q

1.1. (5 points) Rewrite the above query without the union.

1.2. (5 points) What is the algebraic expression for the original query?

1.3. (5 points) What is an equivalence that eliminates the union operator?

1.4. (5 points) What is the expression resulting from applying the equivalence of 1.3 to
the expression of 1.2?

1.5. (5 points) If R has no indexes that can be used for predicate p or for predicate q,
then would it be better to evaluate the query using the execution plan containing the
union operator (your answer to 1.2)? Or should the rewritten plan (your answer to 1.4)
be used instead? Explain your reasoning.

2. Query Optimization – Practice (15 points)
These tables are similar to those from Assignment 7 (in which you tried to get the best
possible performance for a set of queries):

create table U(u_id int not null primary key,
 f int,
 u_filler varchar);

create table T(t_id int not null primary key,
 e int,
 t_filler varchar);

create table S(s_id int not null primary key,
 c int,
 d int,
 s_filler varchar,
 t_id int references T,
 u_id int references U);

Suppose we have the primary key indexes, an index on U.f, and no other indexes.

The execution plan for this query:

select S.c, S.d, T.e
from S
 join T using(t_id)
 join U using(u_id)
where U.f = 1

is this:

Gather (cost=1024.39..3980.94 rows=2)
 Workers Planned: 1
 -> Nested Loop (cost=24.39..2980.74 rows=1)
 -> Hash Join (cost=23.97..2980.27 rows=1)
 Hash Cond: (s.u_id = u.u_id)
 -> Parallel Seq Scan on s (cost=0.00..2647.47 rows=117647)
 -> Hash (cost=23.91..23.91 rows=5)
 -> Index Scan using u_f_idx on u (cost=0.42..23.91 rows=5)
 Index Cond: (f = 1)
 -> Index Scan using t_pkey on t (cost=0.42..0.47 rows=1)
 Index Cond: (t_id = s.t_id)

2.1. (3 points) Draw the left-deep join tree corresponding to this plan.

2.2. (3 points) Which of the joins is most expensive? Why is it expensive?

2.3. (3 points) What indexing changes can be made to make the slower join faster?

2.4. (3 points) How would the execution plan change once you add the index? (Explain
the change in query processing, don’t try and predict the costs.)

2.5. (3 points) How can you modify the indexes to make use of at least one covering
index optimization, (i.e., so that the plan contains an Index Only Scan)?

3. Transactions (12 points)
In the initial state of a database, we have A = 10, B = 20, C = 30. Consider the following
transactions:

T1 T2

begin
read A
read B
read C

begin
write A = 11
delete C
abort
begin

write A = 12
delete C

insert X = 40
commit

read A
read B
read C
read X
commit

The following questions ask about isolation levels. Assume that the database system
implements the minimum correct behavior for each isolation level. So READ
COMMITTED transactions do not guarantee repeatable reads, (unlike Postgres, which
implements more than the minimum).

3.1. (4 points) If the transactions are run with SERIALIZABLE isolation, what values of
A, B, C, and X are read at the end of T1?

3.2. (4 points) If the transactions are run with REPEATABLE READ isolation, what
values of A, B, C, and X are read at the end of T1?

3.1. (4 points) If the transactions are run with READ COMMITTED isolation, what
values of A, B, C, and X are read at the end of T1?

4. Transactions (10 points)
We have a database with four items, A, B, C, D, all with value 10. There are three
transactions whose actions need to be scheduled:

T1:
read(A)
A += 1
write(A)
read(B)
B *= 2
write(B)
read(C)
C += 2
write(C)
read(D)
D *= 3
write(D)

T2:
read(A)
A *= 2
write(A)
read(B)
B += 3
write(B)

T3:
read(C)
C *= 3
write(C)
read(D)
D += 4
write(D)

4.1. (5 points) What are the final values for A, B, C, D if the transactions are executed
with a serial execution order of T1 < T2 < T3?

4.2. (5 points) What are the final values for A, B, C, D if the transactions are executed
with a serial execution order of T2 < T3 < T1?

5. Concurrency Control (18 points)
The table below shows a schedule of the actions of 6 transactions, being run in Postgres,
which uses multi-version concurrency control. The transactions are run using the
SERIALIZABLE isolation level. A, B, and C all have the initial value of 10. Use the
schedule to answer the following questions:

5.1. (2 points) What value does T2 write for D?

5.2. (2 points) T3 blocks when it tries to write A. Why?

5.3. (2 points) When does T3 unblock?

5.4. (2 points) What happens to T3 once it is unblocked?

5.5. (2 points) When does the original version of A, (the version which has the value
10), become obsolete? I.e., when is it no longer possible for any transaction to see that
version of A?

5.6. (2 points)When does the original version of B become obsolete?

5.7. (2 points) When does the original version of C become obsolete?

5.8. (2 points) What is the value of A written by T5?

5.9. (2 points) What is the value of A read by T6?

time T1 T2 T3 T4 T5 T6
0 begin
1 read A
2 A = 11
3 begin
4 begin
5 read A
6 write A
7 begin
8 read A
9 read A
10 A = 14
11 write A
12 read B
13 read B
14

15 read B
16 read C
17 B = 12
18 D = A+B+C
19 write B
20 write D
21 commit
22 read C
23 C = 13
24 write C
25 commit
26 begin
27 read A
28 A = A + 5
29 write A
30 begin
31 read A
32 commit
33 commit
34 commit

6. Database Resilience (20 points)
We have a database with three items, A = 10, B = 20, C = 30. The database system uses
undo logging, and we have the following sequence of events:

time action log record

0 begin(T1)
1 T1: read(A, v1)
2 T1: v1 += 5
3 T1: write(A, v1) update(T1, A, 10)
4 begin(T2)
5 T2: read(B, v2)
6 T2: v2 += 5
7 T2: write(B, v2) update(T2, B, 20)
8 T2: flush()
9 T2: output(B)
10 commit(T2)
11 T1: read(B, v1)
12 T1: v1 += 8
13 T1: write(B, v1) update(T1, B, 25)
14 begin(T3)
15 T3: read(C, v3)
16 T3: v3 += 5
17 T3: write(C, v3) update(T3, c, 30)
18 abort(T3)
19 T1: read(C, v1)
20 T1: v1 += 7
21 T1: write(C, v1) update(T1, C, 30)
22 T1: flush()
23 T1: output(A)
24 T1: output(B)
25 T1: output(C)
26 commit(T1)

Recall that:
• read(X, v) calls input(X) if necessary, to ensure that X is present in a disk

buffer, and then assigns X to variable v.
• write(X, v) writes v back to its disk buffer.
• output(X) writes the modified page containing X back to disk.
• flush() forces to disk any log records that haven’t been written to disk so far.

The following questions ask about undo logging and recovery without checkpointing.

6.1. (4 points) If the database crashes immediately after time 26, what is the sequence of
undo actions applied to restore the database?

6.2. (4 points) If the database crashes at time 25 (instead of T1: output(C)), what is
the sequence of undo actions applied to restore the database?

6.3. (4 points) If the database crashes at time 18, (instead of abort T3), what is the
sequence of undo actions applied to restore the database?

6.4. (4 points) What could go wrong if steps 22 and 23 were swapped, (e.g. due to a bug
in the database system)?

6.5. (4 points) Suppose the database crashes during recovery, i.e., as we are applying the
undo log to recover the state of the database. How would the logging and recovery
process need to be modified to allow for this possibility?

	1. Query Optimization – Theory (25 points)
	2. Query Optimization – Practice (15 points)
	3. Transactions (12 points)
	4. Transactions (10 points)
	5. Concurrency Control (18 points)
	6. Database Resilience (20 points)

