16

G E O P H I L E
release 2.1

User's Guide
February 5, 1999

Geophile, Inc.

120 Whitman Road

Needham MA 02492

(781) 455-8245

jao@mediaone.net

1.
Overview

Geophile is an extensible spatial index.

An index is a data structure which organizes a set of objects for efficient searching. Typically, the objects contain alphanumeric information and the index provides the ability to locate all objects in which the key has a given value. For example, an index might contain employee objects keyed by name. Given a name, the index either finds the employee who has that name or indicates that no employee has that name. Some indexes support retrievals in which the key lies in a range of values, e.g. employees whose name is between “Smith” and “Stone” lexicographically.

A spatial index stores spatial objects such as points, boxes, polygons, curves, surfaces, etc., and supports retrievals involving spatial relationships. For example, a spatial index might be used to locate all the objects containing a given point. (There might be many in case the spatial objects overlap.) Other queries include: find the objects in a given region; find the objects overlapping a given region; find the object nearest a given point; and find all overlapping pairs of objects.

Because Geophile is extensible it is necessary to plug in object classes before it can be deployed in an application. For example, Geophile can be customized for geographic applications by plugging in object classes representing 0-, 1-, and 2-dimensional objects in a 2-dimensional space. Once this is done, an application which manipulates sets of geographic objects (such as maps) can be built easily. The application can insert geographic objects into such a set, remove objects, and most importantly, perform efficient spatial searches.

Geophile is extensible in two ways. As just discussed, spatial object classes must be supplied. The number of these classes is determined by the application, but at least one is required. In addition, an object class implementing a conventional index is required. The reason for this is that Geophile transforms operations on a spatial index into operations on a conventional index.

[image: image1.wmf]insert

remove

random and

sequential

access

Index

insert

remove

spatial

search

Geophile

Extensibility is both a burden and a benefit. On one hand, the user has to supply the appropriate object classes. This will typically be done by finding appropriate software and then writing a layer of “glue” code to conform to Geophile's interface. On the other hand, this approach provides great generality: Geophile is applicable to any kind of spatial data, in a space with any number of dimensions, and for managing either static or dynamic data sets, in main memory or on disk.

This user's guide is organized as follows. Section 2 explains how Geophile can be used in an application, once customization is complete. Customization is explained in section 3. Section 4 describes the interfaces provided for controlling performance tradeoffs within Geophile.

2.
Using Geophile

This section describes the object classes and functions provided by Geophile for managing sets of spatial objects. First, a number of concepts are defined, then the object classes embodying these concepts are described.

2.1.
Geophile Concepts

Geophile stores spatial objects. A spatial object is simply a set of points in space, or, a point-set. The space and the point-sets within it may have any number of dimensions. For example, a map (a 2-dimensional space) may contain landmarks (0-dimensional objects, or points), 1-dimensional objects (e.g. roads and rivers), and 2-dimensional objects (e.g. states).

A point-set may be of any shape. In any given application, only certain shapes will be of interest. For example, in geographic applications, 1- and 2-dimensional objects are typically represented by sequences of line segments. Curved objects (such as roads) are often approximated. In mechanical CAD applications, curved surfaces are important and cannot be approximated by linear boundaries. All of these objects are point-sets.

Geophile only makes one assumption about a point-set – that it can be compared with a box of the same dimensionality as the space. The comparison may indicate that the point-set contains the box, that the point-set overlaps the box (but does not contain it), or that the point-set and the box are disjoint, (i.e. do not overlap).

A space is a set of point-sets. Spatial objects can be inserted into a space and removed. The most important operation involving a space is spatial join, a general form of spatial search.

Spatial join finds the overlapping pairs of point-sets in two spaces. For example, if one space contains state boundaries and the other space contains rivers, then the spatial join returns a set of pairs, (s, r), indicating that river r flows through state s. In many situations, one space will contain many objects and the other will contain a single object. In such situations, these spaces are thought of as containing data and query objects respectively, but the distinction between data and query objects is unnecessary; spatial join treats both as point-sets.

The major purpose of Geophile is to provide an efficient implementation of spatial join.

2.2.
Geophile object classes

The following discussion is based on a simple application which finds overlapping pairs of objects in two sets. The code samples are taken from a sample application included with Geophile, sample1. There are slight differences from the sample application to clarify the presentation.

All the object class declarations required by a Geophile application can be obtained by including the header file geophile.h.

2.2.1.
GF_space_description

Geophile needs a description of the space in which the member spatial objects reside. Geophile provides the GF_space_description class for this purpose. A GF_space_description is created using a constructor. For example, the following code creates a 2-dimensional space in which x-coordinates and y-coordinates run between 0 and 10,000.

int lo[2] = { 0, 0 };

int hi[2] = { 10000, 10000 };

GF_space_description space_description(2, lo, hi);

The GF_space_description constructor has three arguments. The first argument is the number of dimensions of the space. The next two arguments are arrays giving the lower and upper coordinates of each dimension. (In two dimensions, these correspond to the lower-left and upper-right points of the space.) If the space has k dimensions, then these arrays must have at least k elements, and the first k elements must be initialized.

2.2.2.
GF_space

GF_space is the main object class provided by Geophile. A GF_space object stores spatial objects and is used as input to spatial join. A GF_space is created using a constructor. Following creation, spatial objects may be inserted and removed.

The following code shows how a GF_space is created:

Array index(MAX_ARRAY_SIZE);

GF_space space(index, space_description);

First, an index represented by an array is created. The class Array is not part of Geophile, but is provided by the user as one of the required Geophile classes. The array provides the actual storage used by Geophile. An array is used here, but many other data structures could be used too, e.g. a binary tree, or, if persistence is required, a b-tree. The process of creating an index for use with Geophile is discussed in section 3.

The GF_space constructor has two arguments. The first is the index. The second argument is the space description object described earlier. The GF_space constructor has optional arguments that are used for performance tuning. These arguments are described in section 4.

Spatial objects can be inserted into a GF_space in a number of ways. The simplest method is to simply call GF_space::insert. The following code shows how to load the space just created with boxes whose coordinates are read from a file:

int xlo, xhi, ylo, yhi;

while (read_line(xlo, xhi, ylo, yhi))

{

 Box& b = *new Box(xlo, xhi, ylo, yhi);

 space.insert(b);

}

Each time through the loop, the boundaries of the box are read. A Box object, b, is constructed. (The class Box must conform to the Geophile interface as discussed in section 3.) The box is then inserted into the space.

In dealing with static data sets, all the insertions take place at once, and then the space is used just for searching; no further updates will take place. In such situations, better performance can be obtained by using the function GF_space::append for insertion. If this is done, then GF_space::input_complete must be called before any searches are performed. For example, the preceding code sequence could be rewritten as follows:

int xlo, xhi, ylo, yhi;

while (read_line(xlo, xhi, ylo, yhi))

{

 Box& b = *new Box(xlo, xhi, ylo, yhi);

 space.append(b);

}

space.input_complete();

GF_space::append is usually faster than GF_space::insert, but should never be slower. GF_space::input_complete can take a long time to run, proportional to the number of objects in the space.

Both append and insert can be used to add objects to a space. For example, append might be used for “batch” loading of large numbers of new objects, while insert might be used for “on-line” insertions of small numbers of objects. If this is done, then input_complete must be called after a sequence of appends and before the next insert.

One more insertion function, GF_space::operator+=, is provided. This function works like insert if appropriate, like append otherwise. In particular, if all insertions are done using +=, then += works like insert.

In many situations, the GF_index stores pointers to the contained spatial objects. However, it is sometimes the case that a reference of some other type is used. For example, the spatial objects might be stored in a flat file and located by an integer record number. In such a situation, the GF_index stores the record number, not a pointer, and the address of this number, (not the number itself), must be passed to the append or insert function. Example, (taken from the sample application sample2):

Box boxes[10000];

int i = 0;

int xlo, xhi, ylo, yhi;

while (read_line(xlo, xhi, ylo, yhi))

{

 // Create a box in the boxes array

 boxes[i] = Box(xlo, xhi, ylo, yhi);

 // Add it to the space, keyed by subscript

 space.append(boxes[i], &i);

 i++;

}

space.input_complete();

The second argument to append or insert is a point-set identifier. The point-set identifier will usually be an integer, but it is not required to be so. It maybe of any type. Whoever it is that customizes Geophile for a particular application is responsible for informing users whether a point-set identifer is required for populating a particular space, and if it is, the type of the point-set identifer and how to set its value. Within a single application, some spaces may require a point-set identifer while others may not. If a point-set identifier is required for a space, then an object cannot be added to the space using operator +=.

For a sample application using point-set identifiers, see the sample2 application, included with Geophile.

A spatial object can be removed from a GF_space using GF_space::remove or GF_space::operator -=. For example, if b is a Box that has been inserted into GF_space s, then b can be removed from s like this:

s.remove(b);

or like this:

s -= b;

If point-set identifers are in use, then the address of the point-set identifier is passed as the second argument to remove, (and operator -= cannot be used). For example, if Box objects are stored in the boxes array, and the point-set identifer is an array subscript, then boxes[i] can be removed like this:

s.remove(boxes[i], &i);

No matter how the removal is expressed, the identity of the GF_point_set being removed must be known. For example, the following code fragment results in an exception because b_copy, a copy of Box b, is not present in GF_space s.

s.insert(b);

Box b_copy = b;

s.remove(b_copy);

2.2.3.
geophile

The class geophile contains functions for initialization of Geophile and for carrying out spatial joins. Before any Geophile functions are called, the initialization function geophile::initialize must be called as follows:

geophile::initialize();

As discussed in section 2.1, spatial join takes two spaces and returns pairs of spatial objects; each object of the space comes from one of the input spaces, and the members of the pair overlap
. In many situations, one input space contains many objects and the other contains a single object, the “query” object. In these cases, all pairs returned by spatial join contain the query object. To simplify dealing with the input and to improve performance, special versions of spatial join are provided to handle this case. In all, there are three spatial join functions, (all are static member functions):

GF_set<GF_pair>&

geophile::spatial_join(GF_space& left,

 GF_space& right,

 GF_refine_fcn refine);

GF_set<GF_point_set*>&

geophile::spatial_join_1_n(GF_space& left,

 GF_space& right,

 GF_refine_fcn refine);

GF_set<GF_point_set*>&

geophile::spatial_join_n_1(GF_space& left,

 GF_space& right,

 GF_refine_fcn refine);

left and right are the input spaces for spatial join. The first function, spatial_join, is used when both left and right contain multiple spatial objects. This function returns a set of pairs of spatial objects. spatial_join_1_n should be called when the left space contains a single spatial object. The result consists of those spatial objects from the right space that overlap the single object in the left space. spatial_join_n_1 is similar, except that it is the right space that contains a single object.

Geophile implements spatial searches in two phases. First there is a filter step in which an approximate result is computed. This result may contain false positives, (pairs whose members don't really overlap), but never false negatives. I.e., the approximate result is a superset of the final result. The second step is a refinement step in which false positives are discarded. This is done by checking each pair returned by the filter step with a refinement function; this function is provided by the user as the last argument to spatial join.

The spatial join functions return a reference to a GF_set. The GF_set is allocated by spatial join, but is placed in the heap. It is therefore the caller's responsibility to delete the returned GF_set.

The refinement function takes two point-set identifiers and checks for overlap, e.g.

int refine(const void* p1, const void* p2)

{

const Box& b1 = **(const Box**) p1;

const Box& b2 = **(const Box**) p2;

return b1.overlap(b2);

}

2.2.4.
GF_set and GF_set_scan

The template class GF_set is used to return the results of a spatial join. The operation most commonly performed on a GF_set is iteration. This is done using a GF_set_scan object. A scan over a GF_set is started using the GF_set_scan constructor. Following execution of the constructor, the scan is positioned at the first element of the GF_set.

For spatial_join, the GF_set_scan is used to locate the overlapping pairs of objects. An object from the left space, (i.e. the first operand to spatial_join), is retrieved using GF_set_scan::current_left; the overlapping object from the right space is retrieved using GF_set_scan::current_right.

For spatial_join_1_n and spatial_join_n_1, the GF_set_scan returns objects from only one of the spaces, (the second space passed to spatial_join_1_n or the first space passed to spatial_join_n_1). Objects are retrieved using GF_set_scan::current.

Termination can be tested using the functions more or null, (more returns true if and only if null returns false). The scan is advanced using the function next. Example:

GF_set& result = geophile::spatial_join_1_n(...);

for (GF_set_scan result_scan(result);

 result_scan.more();

 result_scan.next())

{

 GF_point_set* p = *(GF_point_set**)result_scan.current();

 ...

}

// Don't need the result set any longer

delete &result;

The functions current, current_left and current_right always return a point to a point-set identifier, even when the point-set identifier is really an ordinary pointer to a spatial object, i.e. GF_point_set*. This is why the result returned by current is cast to GF_point_set** and dereferenced. If the point-set identifier were instead an integer subscript to an array, boxes, then the point-set would be obtained as follows:

unsigned id = *(unsigned*)result_scan.current();

GF_point_set* p = &boxes[id];

3.
Customizing Geophile

Before it can be used in an application, Geophile must be customized by plugging in two kinds of object classes:

1.
Spatial object classes (e.g. box, point, polygon).

2.
Object classes implementing a conventional index (e.g. binary tree, sorted array, b-tree).

In each case, Geophile provides an abstract base class which specifies the functions that the user-supplied classes must implement. This section describes these two abstractions.

3.1.
GF_point_set and GF_region

A space can be thought of as containing an infinite number of infinitely small points. A spatial object covers some of these points and is therefore called a point-set. Geophile provides an object class to represent point-sets, GF_point_set. GF_point_set is an abstract class, which means that subtypes of GF_point_set may be created, but a GF_point_set itself may not. It is the user's responsibility to provide GF_point_set subtypes. Such a class must provide a representation of the spatial object, (as data members of the subtype), and define a single virtual function. Here is a declaration of a 2-dimensional box class:

class Box : public GF_point_set

{

private:

 int Xlo, Xhi, Ylo, Yhi;

public:

 Box(int xlo, int xhi, int ylo, int yhi);

 int xlo() const { return Xlo; }

 int xhi() const { return Xhi; }

 int ylo() const { return Ylo; }

 int yhi() const { return Yhi; }

 // Functions required by GF_point_set

 virtual GF_region_relationship compare

 (const GF_region&) const;

 virtual void dump() const;

};

Box is declared to be a public derived class of GF_point_set, i.e. a subtype. The representation consists of four integer coordinates. The functions xlo, xhi, ylo, and yhi provide access to the box's coordinates to users of the class
.

The function compare is required of all GF_point_set subtypes. This function compares a point to a GF_region and returns the result of the comparison as a GF_region_relationship. GF_region is a box
. compare returns one of three values:

•
GF_CONTAINS if the Box contains the GF_region.

•
GF_OVERLAPS if the Box overlaps the GF_region but does not contain it.

•
GF_DISJOINT otherwise.

Containment of the GF_point_set by a GF_region is not of particular interest; this case is handled by GF_OVERLAP.

The Box::compare function would be implemented as follows:

GF_region_relationship

Box::compare(const GF_region& r) const

{

 // Find the boundaries of the region

 int rxlo = r.lo(0);

 int rxhi = r.hi(0);

 int rylo = r.lo(1);

 int ryhi = r.hi(1);

 if (Xlo <= rxlo && rxhi <= Xhi &&

 Ylo <= rylo && ryhi <= Yhi)

 return GF_CONTAINS;

 else if (Xlo <= rxhi && rxlo <= Xhi &&

 Ylo <= ryhi && rylo <= Yhi)

 return GF_OVERLAPS;

 else

 return GF_DISJOINT;

}

The dimensions of the space are numbered consecutively starting with 0, and a GF_region defines a box ranging from GF_region::lo(i) to GF_region::hi(i) in dimension i.

In practice, GF_point_set subtypes will be more complex. Representations can be quite complex, and the algorithm implementing compare will typically be longer and more complicated. It is also likely that the class will contain other member functions, but the only function required due to inheritance from GF_point_set is compare().

The dump function is optional. It is only invoked by Geophile during tracing, (see section 2.2.3). The dump function for Box is as follows:

const char* Box::dump() const

{

 static char dump_buffer[40];

 sprintf(dump_buffer,

 "(%d:%d, %d:%d)",

 Xlo, Xhi, Ylo, Yhi);

 return dump_buffer;

}

3.2.
GF_index and GF_index_scan

Geophile transforms operations on a GF_space into operations on a conventional index. The index is required to support both random access and sequential access. Random access refers to the ability to do an efficient search for a particular key. Sequential access is the ability to find, following a random access, the record with the next larger or next smaller key. An index which supports both random and sequential access can be used to evaluate range queries efficiently, a capability required by Geophile.

The object class representing an index is GF_index. At least one GF_index subtype must be provided to complete customization of Geophile. In many situations, two subtypes are useful. For example, Geophile might be used to manage a large, persistent set of spatial objects, e.g. a map. Because this data set is persistent, a b-tree subtype of GF_index would be needed. The b-tree would be passed to a GF_space constructor, and all access to the b-tree would then be under control of Geophile. A query over this data set probably consists of a single spatial object, contained in a second GF_space. In this case, the data set (consisting of the one query object) is small and static, and persistence is not required. A sorted array is therefore a good choice for the index underlying the GF_space representing the query object.

A GF_index stores key-value pairs. The type of the object storing these pairs must be provided by the user. The GF_index provides for rapid lookup of a value given a key, and for iteration over the records in key order. The state of an iteration is stored in a GF_index_scan object.

The following discussion shows how a GF_index subtype can be implemented using a sorted array class named Array, and the corresponding GF_index_scan subtype, Array_scan. In the course of this discussion, the interfaces of the classes GF_index and GF_index_scan will be surveyed.

Sections 3.2.1 through 3.2.5 assume that the point-set identifier is a GF_point_set*, and is based on the sample1 application included with Geophile. Section 3.2.6 discusses how to customize Geophile when this assumption does not hold, based on the sample2 application.

3.2.1.
Class declarations

The representation of Array consists of a fixed-size array of Records. Each Record contains a key of type GF_z, a type provided by Geophile, and a pointer to a spatial object. The Array also stores the capacity of the array, and a count of the array elements in use. The only member functions required are a constructor, and the virtual functions required of GF_index subtypes.

class Record

{

private:

 GF_z Key;

 GF_point_set* Value;

public:

 Record()

 {}

 Record(const GF_z& key, const GF_point_set* value)

 : Key(key),

 Value((GF_point_set*)value)

 {}

 static int compare(const void*, const void*);

};

class Array : public GF_index

{

 friend class Array_scan;

private:

 unsigned N, Size;

 Record* Contents;

public:

 Array(unsigned);

 // Functions required by GF_index

 virtual ~Array();

 virtual void append(const GF_z&, const void*);

 virtual void insert(const GF_z&, const void*);

 virtual void remove(const GF_z&, const void*);

 virtual void sort();

 virtual GF_index_scan& scan() const;

 virtual void find(GF_index_scan&,

 const GF_z&,

 GF_fail_direction) const;

};

The state of an iteration over an Array is recorded in an Array_scan, which contains a subscript into the Contents array. The only member functions required are a constructor, and the virtual functions required of GF_index_scan subtypes.

class Array_scan : public GF_index_scan

{

 friend class Array;

private:

 unsigned current;

 Array* owner() const

 { return (Array*)GF_index_scan::owner(); }

public:

 Array_scan(const Array&);

 virtual void first();

 virtual void last();

 virtual void next();

 virtual void previous();

 virtual boolean null() const;

 virtual void finish();

 virtual const GF_z* retrieve_z() const;

 virtual const void* retrieve_ptset() const;

};

3.2.2.
Constructors and destructors

The Array constructor and destructor allocate and reclaim an array of Records.

Array::Array(unsigned n_init)

{

N = 0;

Size = n_init;

Contents = new Record[Size];

}

Array::~Array()

{

 delete [] Contents;

}

An Array_scan is created by calling Array::scan
.

Array_scan::Array_scan(const Array& a)

 : GF_index_scan(a)

{

 current = ARRAY_SCAN_NULL;

}

Array_scan& Array::scan() const

{

 return *new Array_scan(*this);

}

3.2.3.
Searching the index

A GF_index is searched by calling the find function:

virtual void Array::find(GF_index_scan&,

 const GF_z& search_key,

 GF_fail_direction) const;

This function records the position of the Record located by the search in a GF_index_scan. The key for the search is an object of type GF_z. The user can treat GF_z objects exactly like integers, e.g., using the ordinary comparison operators. GF_fail_direction indicates what should happen if the search key is not contained in the Array. If GF_fail_direction is GF_FORWARD, then the scan is set to point to the Record whose key is the smallest greater than the search key. If GF_fail_direction is GF_BACKWARD, then the scan is set to point to the Record whose key is the largest smaller than the search key. Duplicate key values (associated with different values) must be handled carefully. If the key located by find is duplicated in other (neighboring) Records, then find must set the GF_index_scan to the first Record with that key value. This is true whether the GF_fail_direction is set to GF_FORWARD or GF_BACKWARD. For example, if the GF_index stores Records with the keys [1, 1, 1, 3, 3, 3], then the following results must be obtained:

Search key
GF_fail_direction
GF_index_scan set to

0
GF_FORWARD
First occurrence of 1

0
GF_BACKWARD
null

1
GF_FORWARD or GF_BACKWARD
First occurrence of 1

2
GF_FORWARD
First occurrence of 3

2
GF_BACKWARD
First occurrence of 1

3
GF_FORWARD or GF_BACKWARD
First occurrence of 3

4
GF_FORWARD
null

4
GF_BACKWARD
First occurrence of 3

Array::find invokes a binary search function and records the result of the search in the GF_index_scan:

void Array::find(GF_index_scan& scan,

 const GF_z& key,

 GF_fail_direction fail) const

{

 Array_scan& array_scan = (Array_scan&) scan;

 array_scan.current = binsearch(key, fail);

 if (array_scan.current >= size())

 array_scan.current = ARRAY_SCAN_NULL;

}

Array::binsearch implements the binary search. This is a conventional binary serach with two exceptions. First, binsearch implements the logic which handles the GF_fail_direction argument as discussed above, (this part of the code for this is not shown, but can be found in the sample application included with Geophile). Second, the key type is GF_z, a type defined by Geophile. GF_z values can be handled exactly as if they were integers.

unsigned Array::binsearch(const GF_z& key,

 GF_fail_direction fail) const

{

 if (N == 0)

 return 0;

 unsigned position; // stores result

 int lo = 0;

 int hi = N - 1;

 int mid;

 const GF_z* mid_key;

 while (lo <= hi)

 {

 mid = (lo + hi) >> 1;

 mid_key = &Contents[mid].Key;

 // GF_z comparisons use ordinary

 // comparison operators.

 if (*mid_key < k)

 lo = mid + 1;

 else if (*mid_key > k)

 hi = mid - 1;

 else

 break;

 }

 // Logic for handling fail direction

 ...

return position;

}

3.2.4.
Updating the index

As described in section 2.2.2, there are two functions for adding key-value pairs to a GF_index, append and update
. append adds a key-value pair to a GF_index but need not leave the index ordered by key. Geophile guarantees that the index will be so ordered before any searches are carried out. insert must leave the index ordered.

For the Array class, append can simply place Record to the end of the Contents array. insert must maintain key order. It does this by finding the point of insertion and shifting records already in the Array to make room for the insertion.

void Array::append(const GF_z& z, const void* ptset)

{

 if (N >= Size)

 error("Array is out of room in append");

 Contents[N++] =

 Record(z, *(GF_point_set**)ptset);

}

void Array::insert(const GF_z& z, const void* ptset)

{

 if (N >= Size)

 error("Array is out of room in insert");

 unsigned insert_position = binsearch(*r.key_addr(),

 GF_FORWARD);

 assert(insert_position != ARRAY_SCAN_NULL);

 // Shift records

 N++;

 for (int i = N - 1; i > insert_position; i--)

 Contents[i] = Contents[i - 1];

 // Put new record in slot that opened up

 Contents[insert_position] =

 Record(z, *(GF_point_set**)ptset);

}

It is known that the point-set identifier, (the ptset arguments), are really pointers to GF_point_set* values. ptset is therefore cast to GF_point_set** and dereferenced.

Geophile calls sort after append has been called, and before spatial search. (sort is invoked when the application calls GF_space::input_complete.) Any convenient sort implementation can be used as long as key comparisons are done properly. GF_z values must be compared using comparison operators or the GF_z::rank. The following implementation shows how qsort, included with most C and C++ compilers, can be used to implement Array::sort.

int Record::compare(const void* x, const void* y)

{

 Record* r = (Record*) x;

 Record* s = (Record*) y;

 return GF_z::rank(r->Key, s->Key);

}

void Array::sort()

{

 qsort(Contents, N, sizeof(Record), Record::compare);

}

3.2.5.
Iteration

Geophile implements spatial join by performing random and sequential access over GF_index objects. These accesses are mediated by a GF_index_scan. A random access is achieved by calling the GF_index::find function, which has already been described. Random access is also carried out by the functions GF_index::first and GF_index::last. These functions are implemented for Array as follows:

void Array_scan::first()

{

 current = owner()->N == 0

 ? ARRAY_SCAN_NULL

 : 0;

}

void Array_scan::last()

{

 current = owner()->N == 0

 ? ARRAY_SCAN_NULL

 : owner()->N - 1;

}

GF_index::owner provides access to the GF_index being scanned by the Array_scan object. (The Array class also provides an owner function which calls GF_index::owner and then casts the GF_index down to Array.) If owner->N is 0, then there is no Record to point to, so the Array_scan is set to null by assigning ARRAY_SCAN_NULL. Otherwise, first and last set current to 0 and N–1 respectively.

A GF_index_scan can be forced to become null by calling finish. The Array implementation simply assigns current:

void Array_scan::finish()

{

 current = ARRAY_SCAN_NULL;

}

Once a GF_index_scan has been set to point to a Record, the scan can be moved one record forward or backward using the functions next and previous. The implementation for Array is as follows:

void Array_scan::next()

{

 if (current == ARRAY_SCAN_NULL)

 error("Null Array_scan in next");

 if (++current == owner()->N)

 current = ARRAY_SCAN_NULL;

}

void Array_scan::previous()

{

 if (current == ARRAY_SCAN_NULL)

 error("Null Array_scan in previous");

 if (current-- == 0)

 current = ARRAY_SCAN_NULL;

}

A GF_index_scan can be tested for null using the function null. Here is the implementation for Array:

boolean Array_scan::null() const

{

 return current == ARRAY_SCAN_NULL;

}

The components of the current key-value pair can be retrieved by calling retrieve_z and retrieve_ptset. The Array for implementation is as follows:

const GF_z* Array_scan::retrieve_z() const

{

 if (current == ARRAY_SCAN_NULL)

 error("Null cursor in "

 "Array_scan::retrieve_z");

 return &owner()->Contents[current].Key;

}

const void* Array_scan::retrieve_ptset() const

{

 if (current == ARRAY_SCAN_NULL)

 error("Null cursor in "

 "Array_scan::retrieve_ptset");

 return &owner()->Contents[current].Value;

}

3.2.6.
Additional steps required when the point-set identifier type is not GF_point_set*

Geophile creates a number of data structures, such as GF_set which store copies of the keys and values in a GF_index. To do this, Geophile must be able to manipulate these keys and values, e.g. allocate, deallocate, and copy. GF_index keys are always of type GF_z, and Geophile provides the required functions. Geophile also includes the functions needed to manipulate GF_point_set* values. However, if the point-set identifier, (the value in a key-value pair), is not a GF_point_set* but a user-defined type, then the functions manipulating the point-set identifiers must be provided by the user. These functions are provided as virtual functions of a GF_index subtype:

class GF_index

{

...

public:

...

// Point-set id interface

virtual void* allocate_ptset_id(unsigned) const;

virtual void deallocate_ptset_id(void*) const;

virtual void copy_ptset_id(void*, const void*) const;

virtual unsigned size_ptset_id() const;

virtual unsigned hash_ptset_id(const void*) const;

virtual unsigned eq_ptset_id(const void*, const void*)const;

...

};

These functions do the following:

1.
allocate_ptset_id: Allocate an array of point-set identifiers.

2.
deallocate_ptset_id: Deallocate an array of point-set identifiers.

3.
copy_ptset_id: Copy one point-set identifier to another.

4.
size_ptset_id: Return the size of a point-set identifier.

5.
hash_ptset_id: Compute a hash value from a point-set identifier.

6.
eq_ptset_id: Compare two point-set identifiers for equality.

For example, in the sample2 application included with Geophile, the Array class uses the following functions for a point-set identifier of type unsigned.

void* Array::allocate_ptset_id(unsigned n) const

{

return new unsigned[n];

}

void Array::deallocate_ptset_id(void* ptsets) const

{

delete [] (unsigned*) ptsets;

}

void Array::copy_ptset_id(void* to, const void* from) const

{

(unsigned)to = *(unsigned*)from;

}

unsigned Array::size_ptset_id() const

{

return sizeof(unsigned);

}

unsigned Array::hash_ptset_id(const void* ptset) const

{

return *(unsigned*)ptset;

}

int Array::eq_ptset_id(const void* x, const void* y) const

{

return *(unsigned*)x == *(unsigned*)y;

}

To make sure these functions are used with a GF_space, (instead of the default functions which assume a point-set identifier of type GF_point_set*), the use of non-default functions is indicated by passing the enum literal GF_custom_ptset_id_functions to the GF_index constructor.

Array::Array(unsigned n_init)

: GF_index(GF_custom_ptset_id_functions)

{

N = 0;

Size = n_init;

Contents = new Record[Size];

}

4.
Performance tuning

4.1.
One/many vs. many/many spatial joins

The most general form of spatial join is a many/many spatial join. Each input space contains multiple objects, and the spatial join identifies overlapping pairs. The GF_set stores pairs of point-set identifiers. It is often the case that one of the input spaces is known to contain a single object, a “query” object. This is a one/many spatial join. In these cases, there is no point in returning pairs since each pair would contain the query object. Instead, it is sufficient to return a GF_set containing individual point-set identifiers.

Obviously, a one/many spatial join is simpler to use and the result occupies less space. It also results in slightly improved performance. When possible, use a one/many spatial join instead of a many/many spatial join. A one/many spatial join is invoked using geophile::spatial_join_1_n or geophile::spatial_join_n_1. There is no reason to ever use a many/many join when a one/many join suffices.

4.2.
insert vs. append

When initially loading a GF_space with lots of spatial objects, it is preferable to use GF_space::append, and then when loading is complete, call GF_space::input_complete. append does a fast update which is not required to maintain order, and then input_complete does a sort. insert, on the other hand, maintains order at each insertion; this tends to be slower in practice.

insert is best used when adding objects to a GF_space that has already been loaded. append should not be used in such situations as it destroys order and a complete sort would then be required.

4.3.
The cost of filtering vs. the cost of refinement

As discussed in section 2.2.3, Geophile carries out a spatial join in two steps, 1) filtering, and 2) refinement. The filter step is implemented by carrying out random and sequential accesses to the indexes passed to the GF_space constructors. The GF_point_set objects whose addresses are stored in the GF_index objects are not touched. The filter step produces a set of candidate pairs of spatial objects. Refinement checks the members of the pair for overlap with the aid of a user-supplied function, (this function is passed as the last argument to the spatial join functions, see section 2.2.3).

The refinement function has to access the objects and compute overlap. There are two costs involved here. First, there is the cost of simply retrieving the objects. Unless an object is certain to be in virtual memory, the cost of retrieval can be significant. For example, the point-set identifier passed to the refinement function might be an integer key, and retrieval of the point-set might involve a lookup in a disk-based hash file. Second, there is the cost of computing the overlap. For complex representations, (e.g. polyhedra), this time can be quite high.

The time to execute a spatial join depends on the time required by the filter and refinement steps. There are a number of ways to control and balance these costs, described below. Another important performance criterion is the accuracy of the filter step. Accuracy is defined as the ratio of the number of pairs output by the refinement step to the number of pairs output by the filter step. If accuracy is 1 then the filter step is working perfectly, (which is usually unattainable in practice). Accuracy drops as the filter step produces more and more pairs. The number of pairs that have to be refined depends on the accuracy of the filter step. If accuracy is 1, then the work of the refinement step is at a minimum. As accuracy drops, refinement has to examine more pairs, and as discussed above, this can be quite expensive.

4.3.1.
Redundancy

When a GF_point_set is inserted into a GF_space, it is processed by an algorithm which generates a number of GF_z objects. These GF_z objects represent the location of the object in space in an approximate but extremely concise way. The redundancy of a GF_space is the average number of GF_z values per GF_point_set.

The minimum redundancy is 1. This has the advantage of minimizing space requirements of a GF_index, but usually results in very low filter accuracy and this causes an expensive refinement step. On the other hand, redundancy should not be made extremely high, (e.g. 20 or 30). This greatly increases storage costs and insertion time, and slows down the filter step. It is usually possible to get away with much lower redundancy in exchange for only a small sacrifice in filter accuracy. It usually turns out that low redundancy, (e.g. less than 6), is best for two- and three-dimensional data.

Redundancy is controlled through an optional integer argument to the GF_space constructor. This argument determines the maximum redundancy of any single object. Average redundancy will usually be lower. By default, Geophile sets maximum redundancy for a k-dimensional space to 2k. To get more accuracy and reduce the number of pairs that have to be refined, increase maximum redundancy. If storage costs are a concern and some accuracy can be sacrificed, then lower maximum redundancy.

The size of output from the filter and refinement steps can be monitored by calling geophile::n_candidates and geophile::n_results respectively, after a spatial join.

4.3.2.
Resolution

Geophile approximates a spatial object by placing the object on a grid and noting which cells are completely or partially covered by the object. The resolution of the grid can be controlled through the first optional argument to the GF_space_description constructor. This argument is an array whose ith entry is the number of bits of resolution for dimension i, i.e., the base-2 logarithm of the number of cells along the ith dimension. The sum of all the resolutions must not exceed 26.

In a k-dimensional space, each dimension gets 26/k bits of resolution by default, (give or take a bit). The user is free to provide an array that uses fewer bits, or allocates them among the dimensions differently, but there is little point in doing so, (unless bias is also adjusted; this is discussed below). Simply lowering the number of bits of resolution is approximately equivalent to reducing redundancy, which provides for much finer control.

4.3.3.
Bias

As mentioned above, Geophile approximates a spatial object using a grid. The object is placed on the grid, and the grid is repeatedly partitioned to focus in on the boundary of the object. This yields regions of grid cells which are encoded as a single GF_z object. The direction in which the grid is partitioned is controllable using the last optional argument to the GF_space_description constructor. By default, the split direction rotates among the dimensions. Here is an example in two dimensions:

[image: image2.wmf]
If this pattern were to be described explicitly using the last two optional arguments to the GF_space_description constructor, it would look like this:

int lo[2] = { 0, 0 };

int hi[2] = { 10000, 10000 };

unsigned resolution = { 13, 13 };

unsigned bias = { 0, 1, 0, 1, 0, 1, 0, 1,

 0, 1, 0, 1, 0, 1, 0, 1,

 0, 1, 0, 1, 0, 1, 0, 1,

 0, 1 };

GF_space_description

 space_description(2, lo, hi, resolution, bias);

The resolution array indicates that each dimension gets 13 bits of resolution. This bias argument indicates that the direction of splitting alternates between dimensions 0 (x) and 1 (y), starting with dimension 0.

The resolution and bias arguments can be used together to obtain different split patterns. For example, the following code creates a space in which eight (23) vertical splits are followed by a single horizontal split, repeatedly:

int lo[2] = { 0, 0 };

int hi[2] = { 10000, 10000 };

unsigned resolution = { 20, 6 };

unsigned bias = { 0, 0, 0, 1, 0, 0, 0, 1,

 0, 0, 0, 1, 0, 0, 0, 1,

 0, 0, 0, 1, 0, 0, 0, 1,

 0, 0 };

GF_space_description

 space_description(2, lo, hi, resolution, bias);

resolution is set to {20, 6} to reflect the number of 0s and 1s in the bias array. Example:

[image: image3.wmf]
Splitting patterns are modified to adapt to the spatial objects being stored. The default settings work best for objects that are about the same size in each dimension. If objects are usually elongated in one dimension, then the splitting pattern should be adjusted to reflect this. For example, the split pattern above is geared to objects that are about 8 times as tall as they are wide.

4.4.
Caching extra information in a GF_index

Section 3.2.6 showed how user-defined point-set identifiers can be used with Geophile. The obvious use of this is to accomodate non-pointer identifiers. However, this facility can also be used to improve performance. This technique is most applicable when the cost of retrieval of an object is high, (e.g. requiring a disk seek), or when computing overlap is expensive.

The idea is to store as part of the point-set identifier some spatial information that could help the refine function reach a conclusion without having to retrieve the objects involved. For example, suppose that the spatial objects involved are polygons, stored in a hash table on disk, keyed by an integer identifier. The point-set identifier might be set up as follows:

class polygon_id

{

private:

 unsigned id;

 Box mbb; // minimum bounding box

public:

 ...

};

The id data member is the key to the hash table where the complete polygon is stored. mbb is the smallest box containing the polygon. The refinement function can compare mbbs. If they overlap, then the polygons inside the mbbs may or may not overlap; the polygons will have to be retrieved to reach a conclusion. However, if the mbbs do not overlap, then the polygons don't either, and there is no need to retrieve the polygons, or compute polygon overlap, which is expensive.

boolean polygon_refine(const void* x, const void* y)

{

 polygon_id* p = (polygon_id*) x;

 polygon_id* q = (polygon_id*) y;

 if (p->mbb.overlap(q->mbb))

 // Retrieve polygons identified by

 // p->id and q->id and check overlap.

 else

 return false;

}

� Spatial join locates all overlapping pairs.

� In practice, it is almost always a bad idea to make data members public.

� GF_region is box-shaped and has no relationship to the Box class. No matter what subtypes of GF_point_set are provided by the application, GF_region is always box-shaped.

� The Array_scan constructor is private. Array is a friend class of Array_scan, so Array::scan can run the Array_scan constructor.

� operator+= works like either append or insert, depending on the state of the index.

Copyright Geophile, Inc.

Copyright Geophile, Inc.

_1063483832

